Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.459
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 263, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570738

RESUMO

BACKGROUND: Patients with idiopathic scoliosis commonly present with an imbalance of the paraspinal muscles. However, it is unclear whether this muscle imbalance is an underlying cause or a result of idiopathic scoliosis. This study aimed to investigate the role of paraspinal muscles in the development of idiopathic scoliosis based on surface electromyography (sEMG) and radiographic analyses. METHODS: This was a single-center prospective study of 27 patients with single-curve idiopathic scoliosis. Posteroanterior whole-spine radiographs and sEMG activity of the erector spinae muscles were obtained for all patients in the habitual standing position (HSP), relaxed prone position (RPP), and prone extension position (PEP). The Cobb angle, symmetrical index (SI) of the sEMG activity (convex/concave), and correlation between the two factors were analyzed. RESULTS: In the total cohort, the mean Cobb angle in the HSP was significantly greater than the mean Cobb angle in the RPP (RPP-Cobb) (p < 0.001), whereas the mean Cobb angle in the PEP (PEP-Cobb) did not differ from the RPP-Cobb. Thirteen patients had a PEP-Cobb that was significantly smaller than their RPP-Cobb (p = 0.007), while 14 patients had a PEP-Cobb that was significantly larger than their RPP-Cobb (p < 0.001). In the total cohort and two subgroups, the SI of sEMG activity at the apex vertebra (AVSI) in the PEP was significantly greater than 1, revealing significant asymmetry, and was also significantly larger than the AVSI in the RPP. In the RPP, the AVSI was close to 1 in the total cohort and two subgroups, revealing no significant asymmetry. CONCLUSION: The coronal Cobb angle and the SI of paraspinal muscle activity in AIS patients vary with posture changes. Asymmetrical sEMG activity of the paraspinal muscles may be not an inherent feature of AIS patients, but is evident in the challenging tasks. The potential significance of asymmetric paraspinal muscle activity need to be explored in further research.


Assuntos
Cifose , Escoliose , Humanos , Adolescente , Escoliose/diagnóstico por imagem , Eletromiografia , Músculos Paraespinais/diagnóstico por imagem , Estudos Prospectivos , Coluna Vertebral
2.
Artigo em Inglês | MEDLINE | ID: mdl-38653316

RESUMO

We study the magneto-optical properties of Fe-Co-Al ordered alloys in the terahertz range of frequencies. Using the standard Kubo-based approach to compute intrinsic part of the $\sigma_{xy}(\omega)$ we find a strong dependence of $\sigma_{xy}$ on $\omega$ in the terahertz range. For example, we find that below 10~THz Co$_3$Al has nearly constant $\sigma_{xy}$ and that above 10~THz it is reduced by about 50 times. Furthermore, we find a strong dependence of $\sigma_{xy}$ on the chemical composition. For example, we find that the addition of Al to Fe changes the sign of $\sigma_{xy}$, while the addition of Co to Fe leads to a nonmonotonic dependence of $\sigma_{xy}$ on Co concentration.

3.
Psychoneuroendocrinology ; : 107038, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38609808

RESUMO

BACKGROUND: Adversity suffered in childhood may profoundly affect aging over the subsequent life cycle. The field of childhood adversity and aging has amassed a certain number of publications, but there are no bibliometric studies in this field. METHODS: Publications in 10 years on childhood adversity and aging were searched in the Web of Science Core Collection. Bibliometric tools were used to analyze and visualize these publications by country, institution, journal, author, keyword, research area, and co-citation. RESULTS: Four hundred thirty-five publications were retrieved from 2014 to September 21, 2023, with a 4.9% annual growth rate. The United States (251), University of California, San Francisco (59), Elissa S. Epel (11), and Psychoneuroendocrinology (29) were the countries, institutions, authors, and journals contributing the highest number of publications in this field, respectively. "Early-life stress" (87), "depression" (82), "childhood trauma" (69), and "aging" (60) were the keywords that appeared more frequently. CONCLUSIONS: This is the first bibliometric study on childhood adversity and aging. The United States dominates the field regarding publication numbers, research institutions, and researchers. Publications in this field are interdisciplinary, covering several critical subject areas and having far-reaching impacts, with gerontology, neurosciences, psychology, and psychiatry at the core.

4.
ACS Omega ; 9(13): 15030-15039, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585117

RESUMO

A series of novel titanium complexes (2a-2e) bearing [N, P] aniline-chlorodiphenylphosphine ligands (1a-1e) featuring CH3 and F substituents have been synthesized and characterized. Surprisingly, in the presence of polar additive, the complexes (2a-2e) all displayed high catalytic activities (up to 1.04 × 106 gPolymer (mol·Ti)-1·h-1 and produced copolymer with the ultrahigh molecular weight up to 1.37 × 106 g/mol. The catalytic activities are significantly enhanced by introducing electron-withdrawing group (F) into the aniline aromatic ring. Especially, the increase in activity based on different complexes followed the order of 2e > 2d > 2c > 2b > 2a. Simultaneously, density functional theory (DFT) calculations have been performed to probe the polymerization mechanism as well as the electronic and steric effects of various substituents on the catalyst backbone. DFT computation revealed that the polymerization behaviors could be adjusted by the electronic effect of ligand substituents; however, it has little to do with the steric hindrance of the substituents. Furthermore, theoretical calculation results keep well in accordance with experimental measurement results. The article provided an appealing design method that the employment of fluorine atom as electron-withdrawing to be studied is the promotive effect of transition-metal coordination polymerization.

5.
Br J Cancer ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594371

RESUMO

BACKGROUND: Previous studies of non-small cell lung cancer (NSCLC) focused on CEA measured at a single time point, ignoring serial CEA measurements. METHODS: This retrospective cohort included 2959 patients underwent surgery for stage I-III NSCLC. CEA trajectory patterns and long-term cumulative CEA burden were evaluated using the latent class growth mixture model. RESULTS: Four CEA trajectory groups were identified, named as low-stable, decreasing, early-rising and later-rising. Compared with the low-stable group, the adjusted hazard ratios associated with death were 1.27, 4.50, and 3.68 for the other groups. Cumulative CEA burden were positively associated with the risk of death in patients not belonging to the low-stable group. The 5-year overall survival (OS) rates decreased from 62.3% to 33.0% for the first and fourth quantile groups of cumulative CEA burden. Jointly, patients with decreasing CEA trajectory could be further divided into the decreasing & low and decreasing & high group, with 5-year OS rates to be 77.9% and 47.1%. Patients with rising CEA trajectory and high cumulative CEA were found to be more likely to develop bone metastasis. CONCLUSIONS: Longitudinal trajectory patterns and long-term cumulative burden of CEA were independent prognostic factors of NSCLC. We recommend CEA in postoperative surveillance of NSCLC.

6.
Toxicology ; : 153805, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621634

RESUMO

Moon dust presents a significant hazard to manned moon exploration missions, yet our understanding of its toxicity remains limited. The objective of this study is to investigate the pattern and mechanism of lung inflammation induced by subacute exposure to moon dust simulants (MDS) in rats. SD rats were exposed to MDS and silica dioxide through oral and nasal inhalation for 6hours per day continuously for 15 days. Pathological analysis indicated that the toxicity of MDS was lower than that of silica dioxide. MDS led to a notable recruitment and infiltration of macrophages in the rat lungs. Material characterization and biochemical analysis revealed that SiO2, Fe2O3, and TiO2 could be crucial sources of MDS toxicity. The study revealed that MDS-induced oxidative stress response can lead to pulmonary inflammation, which potentially may progress to lung fibrosis. Transcriptome sequencing revealed that MDS suppresses the PI3K-AKT signaling pathway, triggers the Tnfr2 non-classical NF-kB pathway and IL-17 signaling pathway, ultimately causing lung inflammation and activating predominantly antioxidant immune responses. Moreover, the study identified the involvement of upregulated genes IL1b, csf2, and Sod2 in regulating immune responses in rat lungs, making them potential key targets for preventing pulmonary toxicity related to moon dust exposure. These findings are expected to aid in safeguarding astronauts against the hazardous effects of moon dust and offer fresh insights into the implications and mechanisms of moon dust toxicity.

7.
Sci Rep ; 14(1): 7988, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580715

RESUMO

In the human genome, heterozygous sites refer to genomic positions with a different allele or nucleotide variant on the maternal and paternal chromosomes. Resolving these allelic differences by chromosomal copy, also known as phasing, is achievable on a short-read sequencer when using a library preparation method that captures long-range genomic information. TELL-Seq is a library preparation that captures long-range genomic information with the aid of molecular identifiers (barcodes). The same barcode is used to tag the reads derived from the same long DNA fragment within a range of up to 200 kilobases (kb), generating linked-reads. This strategy can be used to phase an entire genome. Here, we introduce a TELL-Seq protocol developed for targeted applications, enabling the phasing of enriched loci of varying sizes, purity levels, and heterozygosity. To validate this protocol, we phased 2-200 kb loci enriched with different methods: CRISPR/Cas9-mediated excision coupled with pulse-field electrophoresis for the longest fragments, CRISPR/Cas9-mediated protection from exonuclease digestion for mid-size fragments, and long PCR for the shortest fragments. All selected loci have known clinical relevance: BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, PMS2, SCN5A-SCN10A, and PKI3CA. Collectively, the analyses show that TELL-Seq can accurately phase 2-200 kb targets using a short-read sequencer.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA/genética , Genoma Humano
8.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611707

RESUMO

Methanol-gasoline blends have emerged as a promising and environmentally friendly bio-fuel option, garnering widespread attention and promotion globally. The methanol content within these blends significantly influences their quality and combustion performance. This study explores the qualitative and qualitative analysis of methanol-gasoline blends using Raman spectroscopy coupled with machine learning methods. Experimentally, methanol-gasoline blends with varying methanol concentrations were artificially configured, commencing with initial market samples. For qualitative analysis, the partial least squares discriminant analysis (PLS-DA) model was employed to classify the categories of blends, demonstrating high prediction performance with an accuracy of nearly 100% classification. For the quantitative analysis, a consensus model was proposed to accurately predict the methanol content. It integrates member models developed on clustered variables, using the unsupervised clustering method of the self-organizing mapping neural network (SOM) to accomplish the regression prediction. The performance of this consensus model was systemically compared to that of the PLS model and uninformative variable elimination (UVE)-PLS model. Results revealed that the unsupervised consensus model outperformed other models in predicting the methanol content across various types of methanol gasoline blends. The correlation coefficients for prediction sets consistently exceeded 0.98. Consequently, Raman spectroscopy emerges as a suitable choice for both qualitative and quantitative analysis of methanol-gasoline blend quality. This study anticipates an increasing role for Raman spectroscopy in analysis of fuel composition.

9.
Life Sci ; 346: 122635, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615745

RESUMO

The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.

10.
Nat Prod Res ; : 1-8, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436324

RESUMO

Phytochemical investigation on the plant endophytic fungus Penicillium ferraniaense GE-7 led to the isolation of 18 compounds including one new α-pyrone derivative, peniferranige A (1). The structure including the absolute configuration of compound 1 was elucidated by NMR, HRMS, and ECD data. Demethoxyfumitremorgin C (16) and meleagrin (17) possessed moderate activities against the human lung cancer cell line H1975 with IC50 values of 28.52 ± 1.07 and 13.94 ± 1.92 µM, respectively.

11.
Dalton Trans ; 53(15): 6660-6666, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38525801

RESUMO

Hydroformylation is one of the most important homogeneous reactions in industrial production. Herein, a density functional theory (DFT) method was employed to investigate two proposed reaction mechanisms of hydroformylation catalyzed by cationic cobalt(II) complexes, the carbonyl dissociative mechanism and the associative mechanism. The calculated results showed that the heterolytic H2 activation is the rate-determining step for both the dissociative mechanism and the associative mechanism, with energy barriers of 26.8 kcal mol-1 and 40.5 kcal mol-1, respectively. Meanwhile, the regioselectivity, the spin multiplicity of the catalyst and the substituent effects on the reaction were also investigated. The most stable cobalt(II) catalyst has a doublet state and the linear aldehyde is the dominant product. In addition, it was found that the energy barrier of the reaction decreased when the electron density of the Co center of the catalyst was increased by changing the ligand. The catalytic activity of the catalyst was proposed to be the best when the PEt2 group of the ligand is replaced by the P(tBu)2 group. This study might not only provide new insights for hydroformylation catalyzed by cobalt but also facilitate theory-guided design of novel transition metal catalysts for hydroformylation.

12.
J Nanobiotechnology ; 22(1): 135, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553735

RESUMO

The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a promising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsulate the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM imaging and share our perspective on the potential trajectory of DDS development.


Assuntos
Sistemas de Liberação de Medicamentos , Linfonodos , Humanos , Metástase Linfática/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia
13.
Clin Exp Med ; 24(1): 56, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546916

RESUMO

B cell acute lymphoblastic leukemia (ALL) is characterized by the highly heterogeneity of pathogenic genetic background, and there are still approximately 30-40% of patients without clear molecular markers. To identify the dysregulated genes in B cell ALL, we screened 30 newly diagnosed B cell ALL patients and 10 donors by gene expression profiling chip. We found that ECM1 transcription level was abnormally elevated in newly diagnosed B cell ALL and further verified in another 267 cases compared with donors (median, 124.57% vs. 7.14%, P < 0.001). ROC analysis showed that the area under the curve of ECM1 transcription level at diagnosis was 0.89 (P < 0.001). Patients with BCR::ABL1 and IKZF1 deletion show highest transcription level (210.78%) compared with KMT2A rearrangement (39.48%) and TCF3::PBX1 rearrangement ones (30.02%) (all P < 0.05). Also, the transcription level of ECM1 was highly correlated with the clinical course, as 20 consecutive follow-up cases indicated. The 5-year OS of patients (non-KMT2A and non-TCF3::PBX1 rearrangement) with high ECM1 transcription level was significantly worse than the lower ones (18.7% vs. 72.9%, P < 0.001) and high ECM1 transcription level was an independent risk factor for OS (HR = 5.77 [1.75-19.06], P = 0.004). After considering transplantation, high ECM1 transcription level was not an independent risk factor, although OS was still poor (low vs. high, 71.1% vs. 56.8%, P = 0.038). Our findings suggested that ECM1 may be a potential molecular marker for diagnosis, minimal residual disease (MRD) monitoring, and prognosis prediction of B cell ALL.Trial registration Trial Registration Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTR-OPC-14005546]; http://www.chictr.org.cn .


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Prognóstico , Biomarcadores , Fatores de Risco , Proteínas da Matriz Extracelular/genética
14.
Chemistry ; : e202400614, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38505987

RESUMO

Experimental and theoretical study of the regioselectivity and mechanism of polycyclic aromatic amine (PAA) electrochemical oxidation is important for designing nitrogen doped large π-conjugated functional molecules. Herein, we used binary-, ternary-, and quaternary-fused PAAs as electro-oxidative reaction substrates to investigate the yield changes of carbazole and phenazine based aza-helicene other than oligomers, which were obtained through pyrrole and pyrazine annulation pathways. Combined with the restrained electrostatic potential (RESP) and steric hindrance factor analysis of the substrate, the electron spin density distribution of free radical resonance hybrid and the spin population analysis of the atoms in the structure of each free radical tautomer indicate that the degree of delocalized dispersion of N free radical and the resulting change in the spin density distribution of C free radical tautomers determine the reaction regioselectivity. The potential charge of the K-region, Bay-region, and L-region adjacent to the C(α)-C(ß1) bond is higher than that of other regions within the molecule, and the charge in these high RESP regions tends to delocalize more strongly toward electron-deficient N free radicals. Thus, the activity of N-C(α)-C(ß1) region is increased, which supports the proposed free radical addition and free radical coupling mechanism for the electro-oxidative reaction of PAA.

15.
Aging (Albany NY) ; 16(6): 5501-5525, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517390

RESUMO

The endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved, multi-subunit complex acting as an insertase at the ER membrane. Growing evidence shows that the EMC is also involved in stabilizing and trafficking membrane proteins. However, the structural basis and regulation of its multifunctionality remain elusive. Here, we report cryo-electron microscopy structures of human EMC in apo- and voltage-dependent anion channel (VDAC)-bound states at resolutions of 3.47 Å and 3.32 Å, respectively. We discovered a specific interaction between VDAC proteins and the EMC at mitochondria-ER contact sites, which is conserved from yeast to humans. Moreover, we identified a gating plug located inside the EMC hydrophilic vestibule, the substrate-binding pocket for client insertion. Conformation changes of this gating plug during the apo-to-VDAC-bound transition reveal that the EMC unlikely acts as an insertase in the VDAC1-bound state. Based on the data analysis, the gating plug may regulate EMC functions by modifying the hydrophilic vestibule in different states. Our discovery offers valuable insights into the structural basis of EMC's multifunctionality.


Assuntos
Retículo Endoplasmático , Canais de Ânion Dependentes de Voltagem , Humanos , Microscopia Crioeletrônica , Canais de Ânion Dependentes de Voltagem/metabolismo , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae
16.
Artigo em Inglês | MEDLINE | ID: mdl-38538999

RESUMO

In this study, highly efficient fluoride removal of nano MgO was successfully synthesized using a simple hydrothermal precipitation method. Hexadecyl trimethyl ammonium bromide (CTMAB) was utilized as a surfactant. Its long-chain structure tightly wrapped around the precursor crystal of basic magnesium chloride, inhibiting the growth of precursor crystals, reducing their size, and improving crystal dispersion. This process enhanced the adsorption capacity of nano MgO for fluoride. The adsorption performance of nano MgO on fluoride was investigated. The results indicate that pseudo-second-order kinetics and the Langmuir isotherm model can describe the adsorption behavior for fluoride, with a maximum adsorption capacity of 122.47 mg/g. Methods such as XRD, SEM, XPS, and FTIR were employed to study the adsorption mechanisms of the adsorbent. Additionally, factors potentially affecting adsorption performance in practical applications, such as pH and competing ions, were examined. This study enhances our profound understanding of the defluorination effectiveness and mechanisms of nano MgO.

17.
Adv Sci (Weinh) ; : e2400112, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500296

RESUMO

Contact resistance has become one of the main bottlenecks that hinder further improvement of mobility and integration density of organic field-effect transistors (OFETs). Much progress has been made in reducing contact resistance by modifying the electrode/semiconductor interface and decreasing the crystal thickness, however, the development of new organic semiconductor materials with low contact resistance still faces many challenges. Here, 2,6-bis-phenylethynyl-anthracene (BPEA) is found, which is a material that combines high mobility with low contact resistance. Single-crystal BEPA OFETs with a thickness of ≈20 nm demonstrated high mobility of 4.52 cm2  V-1  s-1 , contact resistance as low as 335 Ω cm, and band-like charge transport behavior. The calculated compatibility of the EHOMO of BPEA with the work function of the Au electrode, and the decreased |EHOMO -ΦAu | with the increase of external electric field intensity from source to gate both contributed to the efficient charge injection and small contact resistance. More intriguingly, p-type BPEA as a buffer layer can effectively reduce the contact resistance, improve the mobility, and meanwhile inhibit the double-slope electrical behavior of p-channel 2,6-diphenyl anthracene (DPA) single-crystal OFETs.

18.
Front Physiol ; 15: 1342761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505707

RESUMO

Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.

19.
Heliyon ; 10(6): e27474, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510001

RESUMO

This paper discusses how managers adjust their strategies to allocate relevant resources more effectively and maximize economic benefits when major technological changes are predicted for the future. For a supply chain system consisting of a single manufacturer and two competing retailers as the research object. First, random stop model is applied to portray the impact of technological innovation on the decision-making of supply chain members. On this basis, differential game models for supply chain members are constructed based on different cooperation modes, including centralized, decentralized, and retailers alliance. Second, we solve and compare the optimal decision-making, emissions reduction, low-carbon goodwill, and profit levels before and after technological innovation in different modes. Finally, we design a bilateral cost-sharing contract to achieve coordination. Results demonstrate that: (1) Before the success of technological innovation, when a higher probability of success and uplift rate is predicted can incentivize supply chain members' emissions reduction and low-carbon promotion inputs; (2) In the presuccess period of technological innovation, members' independent decision-making (decentralized decision-making) can optimize the retailer's low-carbon promotional inputs under certain conditions. In contrast, the optimality of decentralized decision-making after technological innovation depends only on the influence of competition intensity. (3) The bilateral cost-sharing contract designed in this paper can optimize supply chain-related inputs and performance levels to achieve perfect coordination within the supply chain system, given that specific preconditions are satisfied.

20.
BMC Genomics ; 25(1): 231, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431573

RESUMO

BACKGROUND: Telomere length is a critical metric linked to aging, health, and disease. Currently, the exploration of target proteins related to telomere length is usually limited to the context of aging and specific diseases, which limits the discovery of more relevant drug targets. This study integrated large-scale plasma cis-pQTLs data and telomere length GWAS datasets. We used Mendelian randomization(MR) to identify drug target proteins for telomere length, providing essential clues for future precision therapy and targeted drug development. METHODS: Using plasma cis-pQTLs data from a previous GWAS study (3,606 Pqtls associated with 2,656 proteins) and a GWAS dataset of telomere length (sample size: 472,174; GWAS ID: ieu-b-4879) from UK Biobank, using MR, external validation, and reverse causality testing, we identified essential drug target proteins for telomere length. We also performed co-localization, Phenome-wide association studies and enrichment analysis, protein-protein interaction network construction, search for existing intervening drugs, and potential drug/compound prediction for these critical targets to strengthen and expand our findings. RESULTS: After Bonferron correction (p < 0.05/734), RPN1 (OR: 0.96; 95%CI: (0.95, 0.97)), GDI2 (OR: 0.94; 95%CI: (0.92, 0.96)), NT5C (OR: 0.97; 95%CI: (0.95, 0.98)) had a significant negative causal association with telomere length; TYRO3 (OR: 1.11; 95%CI: (1.09, 1.15)) had a significant positive causal association with telomere length. GDI2 shared the same genetic variants with telomere length (coloc.abf-PPH 4 > 0.8). CONCLUSION: Genetically determined plasma RPN1, GDI2, NT5C, and TYRO3 have significant causal effects on telomere length and can potentially be drug targets. Further exploration of the role and mechanism of these proteins/genes in regulating telomere length is needed.


Assuntos
Sistemas de Liberação de Medicamentos , Estudo de Associação Genômica Ampla , Fenômica , Telômero/genética , Análise da Randomização Mendeliana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...